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The recently proposed Symmetry-Conserving Energy Density Functional approach [G. Hupin, D.
Lacroix and M. Bender, Phys. Rev. C84, 014309 (2011)] is applied to perform Variation After
Projection onto good particle number using Skyrme interaction including density dependent terms.
Systematic study of the Kr and Sn isotopic chain is made. This approach leads to non-zero pairing
in magic nuclei and a global enhancement of the pairing gap is obtained compared to the original
theory that breaks the particle number symmetry. The need to consistently readjust the pairing
effective interaction strength is discussed.
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I. INTRODUCTION

The nuclear Energy Density Functional (EDF) is a ver-
satile approach [1, 2] that allows one to describe a variety
of phenomena in nuclei ranging from nuclear structure ef-
fects, nuclear dynamics, to thermodynamics. One speci-
ficity of nuclear energy functional approaches is that the
densities used in the energy might not respect some of
the properties related to the symmetry of the underly-
ing bare many-body Hamiltonian [3, 4]. This is done
by introducing a reference Slater (or quasi-particle) state
from which the one-body normal density (and eventually
the anomalous density) is constructed to express the en-
ergy. These densities are generally localized in space and
therefore do not correspond to a translationally invariant
system. This is often broadened to states that are nei-
ther an eigenstate of the particle number operator (then
breaking the U(1) symmetry) nor of the total angular
momentum operator.

The use of Symmetry-Breaking (SB)-EDF is a power-
ful technique to describe some aspects of nuclei like the
onset of pairing and/or the onset of deformation. First
however, restoration of broken symmetries is necessary to
compare with experiments where eigenstates with good
quantum numbers are probed. Second, the restoration of
symmetries and more generally the use of configuration
mixing techniques is a way to grasp some additional cor-
relations associated with quantum fluctuations in a col-
lective space[5, 6]. Ultimately, the state of the art of EDF
is to perform a configuration mixing to describe the co-
existence of different intrinsic configurations like shapes,
excited states, electromagnetic and nuclear transitions.

This technique of symmetry breaking followed by sym-
metry restoration has been recently shown to lead to
spurious contributions to the energy and must be ap-
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plied with caution [7, 8]. Overall, the very notion of
symmetry-breaking in a functional approach needs to be
clarified [9]. For detailed discussion, see recent works
[7, 8, 10–13]. Facing these difficulties, at present, three
strategies have been proposed to perform well converged
configuration mixing calculations within EDF: (i) One
can eventually derive the energy functional starting from
a true Hamiltonian and completely incorporate the Pauli
principle [7]. (ii) For some specific functionals, by com-
paring with the Hamiltonian case, spurious contributions
can be identified and removed from the energy functional
[10–12] (iii) the energy functional used in the SB case can
be consistently extended to a functional of the densities
of the state with the symmetries restored. This is the
Symmetry-Conserving (SC)-EDF approach proposed in
ref. [14].

The strategies (i) and (ii) prevent us from using den-
sity dependent interactions with non-integer powers of
the density, and strongly reduce the ability to tailor
the density functional. Note that strategy (i) is nowa-
days used with the Gogny force [15–17] taking a spe-
cific care of the density dependent term. Recent appli-
cations of strategy (ii) have shown that this approach
becomes rather involved when several symmetries are
restored simultaneously[18]. While momentarily formu-
lated only for the particle number restoration case (see
also discussion in ref. [19]), the strategy (iii) can be
used for any functional form like those used in the SB
case starting from the Gogny or Skyrme like interaction,
while having a different interaction in the pairing chan-
nel. Secondly, it is not required to strictly enforce the
anti-symmetrization and some useful numerical approx-
imations like the Slater approximation for the Coulomb
exchange can still be used.

In this article, the work presented in ref. [14] is ex-
tended to perform Variation After Projection (VAP) en-
forcing good particle number. We show that the SC-EDF
used with the up-to-date functionals based on Skyrme in-
teraction can be competitive to describe pairing in nuclei.
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II. THE SYMMETRY-CONSERVING EDF
APPROACH

Starting, from a quasi-particle state |Φ0⟩, most cur-
rently used Symmetry-Breaking EDF based on the
Skyrme[20] or Gogny[21] forces can be written as

ESB[Φ0] =
∑
i

tii ρii +
1

2

∑
i,j

vρρijij ρiiρjj

+
1

4

∑
i,j

vκκiı̄jȷ̄ κ
∗
iı̄κjȷ̄ , (1)

where vρρ and vκκ denote the effective vertices in the
particle-hole and particle-particle channels. Here ρ and
κ denote the normal and anomalous densities expressed
in the canonical basis.
In the Hamiltonian case, the U(1) symmetry restora-

tion can be made by considering the component of the
quasi-particle state with specific particle number. Intro-
ducing the particle number projector PN , a new state
|ΨN ⟩ defined through:

|ΨN ⟩ = PN |Φ0⟩ . (2)

While there is no ambiguity when a Hamiltonian is used,
the main challenge within EDF is to properly extend (1)
to account for particle number conservation.
This problem has been carefully analyzed in ref. [14]

leading to a generalization of the energy density func-
tional given by:

ESC[ρ̂N , R̂N ] =
∑
i

tii ρ
N
ii +

1

2

∑
i ̸=j,j ̸=ı̄

v̄ρρijij RN
jiji

+
1

2

∑
i

(v̄ρρiiii + v̄ρρiı̄iı̄) (ρNii )
2

+
1

4

∑
i ̸=j,i̸=ȷ̄

v̄κκiı̄jȷ̄ R
N
ȷ̄jı̄i

+
1

2

∑
i

v̄κκiı̄iı̄ ρ
N
ii (1− ρNii ) , (3)

where ρN and RN denote respectively the one and two
bod matrices of the projected state, Eq. (2). Note that,
within SC-EDF, it is further postulated that any depen-
dence of the effective vertices in terms of the SB density
should be replaced by an equivalent dependence of the
projected density. Doing so, the energy becomes a func-
tional of the projected state degrees of freedom (DOF)
only. In former applications of SC-EDF, the expression
of the energy has been used in the Projection After Vari-
ation (PAV) scheme showing the absence of any patholo-
gies observed previously even if density dependent inter-
action are used in the functional.
Here, the SC-EDF is applied to perform VAP. In this

case, the energy should be minimized with respect to all
possible variations of the projected state DOF, i.e.

δESC[ρ̂N , R̂N ] = 0. (4)

In the following we will consider the specific case where
the state |Φ0⟩ is written in a BCS form as

|Φ0⟩ =
∏
i>0

(
ui + vi a

†
ia

†
ı̄

)
|0⟩ , (5)

with u2
i + v2i = 1. Accordingly, variation of the pro-

jected state DOF can be recast into variations of the
single-particle state components ϕi(r) associated to the

creation operator a†i and variations of the quantity v2i
corresponding to the SB occupancy of orbital i. We then
end up with a set of coupled equation:

δESC
∂ϕ⋆

i (r)
= 0,

δESC
∂v2i

= 0 (6)

to be solved self-consistently. This procedure is the
same as the one generally used in the Hamiltonian case
in PNP-VAP [22–24]. The eigenvalue equations of the
self-consistent problem are recalled and explained in Ap-
pendix A. It is worth mentioning that we took advantage
of the analytic expressions of the densities RN [25]. This
step is crucial to reduce the computational burden of the
calculation.

The Euler-Lagrange equations associated with the
minimization of the energy yield respectively to a set
of eigenvalues and non-linear equations that are rather
involved numerically. Taking advantage of the EDF flex-
ibility without breaking the consistency requirement of
the approach [14], the minimization can be greatly sim-
plified numerically by making the assumption in Eq. (3)
that,

RN
jiji ≃ ρNii ρ

N
jj . (7)

This approximation is used below.

III. APPLICATIONS

The EV8 code of Bonche, Flocard and Heenen[26] has
been updated to allow minimization of the functional (3)
using the approximation in (7). The numerical method
consists in solving the mean field problem by an imagi-
nary time step method [27] and the optimization of the
occupation probabilities by a sequential quadratic pro-
gramming. In the following, the SC-EDF method is used
with the SLy4 interaction in the mean-field channel [28]
while the effective pairing interaction considered [29] is

vκκ(r, r′) =
V0

2
(1− Pσ)

(
1−

(
ρ (R)

ρ0

)α)
δ(r− r′) ,

(8)

with R = (r + r′)/2. V0 = 1250 MeV is the pairing
constant, α = 1 and ρ0 = 0.16 fm−3 is the saturation
density. In addition, to avoid the ultra-violet divergence
that appears with contact interaction, a cut-off factor[30]
with an energy interval of 5 MeV is used to select states
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around the Fermi energy. These values have been typ-
ically used to reproduce neutron and proton separation
energies[31] and, in the standard terminology, correspond
to a surface pairing.
In this work, SC-EDF calculations are systematically

performed for the Kr and Sn isotopic chains. In the lat-
ter case, the proton number is magic while in the for-
mer case it is not. As an illustration of the results, the
evolution of the energy as a function of the deformation
obtained with the SC functional (blue solid line) is com-
pared to the original BCS result (green dashed line) for
72Kr and 86Kr respectively in panel (a) and (b) of figure
1. Similar curves are shown in figure 2 for 116Sn and
132Sn. These nuclei have been selected because they are
representative of the different types of situations: mid-
shell nucleus (72Kr), simply (86Kr and 116Sn) or doubly
magic nucleus (132Sn). The results have been obtained
by adding a quadrupole constraint in the minimization
while the deformation parameter is defined by

β =

√
5

16π

4π

3R2A
⟨Q20⟩ , (9)

where ⟨Q20⟩ is the quadrupole deformation and R =
1.2 A1/3 is the nuclear radius. It can be seen in fig-
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FIG. 1: (Color online) Evolution of the energy obtained
using the VAP calculation (blue solid line) for the 72Kr (a)
and 86Kr (b) as a function of deformation. In each case, the
BCS result obtained with the original EV8 code is shown with
a green dashed curve.

ures 1 and 2, that the potential energy curves obtained
with the SC-EDF are smooth and, as already discussed
in ref. [14], we do not see any of the pathologies observed
in other approaches with density dependent interactions
[8, 11].
Figures 2 and 1 illustrate that the energy potential

curves of the SC-EDF functional with respect to the
quadrupole deformation are shifted from BCS. There are
no changes in the shape of these curves, both BCS and
shifted SC functional can be almost superimposed. The
energy gain, illustrated by the shift, is between 1 and
2 MeV for mid-shell and simply magic nuclei while the
doubly magic nuclei 132Sn gains more than 0.5 MeV. This
increase in correlation energy comes from the improved
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FIG. 2: (Color online) Same as figure 1 for the 116Sn (a) and
132Sn (b).

treatment of the pairing correlations from the projection
formalism that has been used to tailor the functional de-
pendances of the energy.

As seen from figures 2 and 1, the full SC functional
induces rather small differences on the total energy com-
pared to the original BCS case. It should be mentioned
however that the pairing energy is always enhanced when
the symmetry is conserved, especially around shell clo-
sures, as expected. Indeed, when the pairing is treated
within BCS or HFB, there is a sudden disappearance of
correlations in the weak pairing regime, this is the well-
known BCS threshold anomaly. A measure of the pairing
strength is provided by the mean gap[32]:

∆n/p =
E

n/p
pairing∑

i

√
ρii(1− ρii)

, (10)

where ρii are the occupation probabilities of a given the-

ory and E
n/p
pairing its neutron/proton pairing energy. In

the SC-EDF, these energies are calculated as the sum of
the last two terms in Eq. (3). This observable has the
advantages (i) to correlate with the pairing gap in the
limit of a constant pairing interaction (ii) to probe both
the pairing energy and the trend of the occupation proba-
bilities such as the fragmentation of occupation numbers
around the Fermi surface.

In figures 3 and 4, the deformation parameter β (Eq.
9) at the minimum of the energy (3a and 4a), the av-
erage proton (3b and 4b) and neutron (3c and 4c) gaps
are shown as a function of the neutron number along the
Kr and Sn isotopic chain respectively. The BCS (green
dashed lines) and the SC-EDF (blue solid lines) results
are compared. Note that consistently with the observa-
tions from figures 1 and 2, the deformation parameter
at the minimum of the energy (long dashed line) is the
same for both BCS and SC-EDF, hence is plotted once.
In this figure, BCS exhibits strong variations of the gap
close to the N = 50 shell closure. This is a fingerprint
of the abrupt disappearance of pairing in this formalism
close to magicity. It is also worth to keep in mind that
the evolution of deformation as N increases might also
induce local fluctuations. This is the case for N > 56 in
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FIG. 3: (Color online) Value of the deformation parameter β
(Eq. 9) at the minimum (a), average proton (b) and neutron
(c) mean gaps defined by Eq. 10 are shown as a function
of the neutron number along the Kr isotopic chain obtained
from BCS (green dashed lines) and the SC-EDF (blue solid
lines). The deformation parameter at the minimum is the
same for both BCS and SC-EDF (gray long dashed line). The
calculations are performed with a SLy4 effective interaction
that includes a non-integer density dependence and a density
dependent pairing interaction(Eq. (8)). The minimization is
performed including the quadrupole degree of freedom. In
the neutron case, the experimental gaps (black crosses) and
their error bars[34] obtained with the three points formula(see
[32, 33]) are also presented.
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FIG. 4: (Color online) Same as figure 3 for the Sn isotopic
chain. The proton mean gap (b) of BCS identifies with zero
along the isotopic line.

the Kr chain as we can see from the evolution of the de-
formation (3a) reflected by variations in panels (3b) and
(3c).

In the SC-EDF case, it is observed that the pairing
gap is systematically enhanced compared to the BCS re-
sults. This enhancement is increased at the shell closure.
For instance, in the proton gap of Sn isotopes, a mean
gap of ∼ 0.7 MeV is obtained (see figure 4) while it was

equal to zero at the BCS level. In the Kr isotopic chain,
both BCS and SC-EDF lead to deformed nuclei with the
same deformation parameter. The increase of pairing
correlations is only due to a better treatment of quan-
tum fluctuations in gauge space by the SC method. It is
then seen that the increase at the shell closure (N = 50)
is further enhanced to ∼ 1 MeV while it is of the order of
0.3 − 0.5 MeV in the mid-shell. Altogether, the pairing
gap obtained within the VAP approach is much smoother
than the BCS pairing gap and more consistent with the
experimental observation.

It is important to note that the increase of the pairing
gap is not fully reflected in the lowering of the ground
state binding energy. Indeed, the SC-EDF is a fully self-
consistent approach and when the enhanced pairing built
up in the minimization, the mean-field reorganizes. Gen-
erally, it is observed that the mean-field energy, denoted
by EMF and defined as the total energy minus the pair-
ing energy, increases slightly and partially compensates
for the effect of the pairing. In figures 5 and 6, the three
quantities

∆Epairing = EVAP
pairing − EBCS

pairing ,

∆EMF = EVAP
MF − EBCS

MF ,

∆Etot = EVAP
tot − EBCS

tot ,

are displayed as a function of the neutron number respec-
tively from panel (a) to (c) for the Kr and Sn isotopes.
In these figure, we see that ∆Epairing (5a and 6a) is al-
ways negative while ∆EMF (5b and 6b) is always positive
and therefore, the net reduction of the total energy (c)
is much less than the pairing correlation would suggest.
Altogether, the total energy is shifted. The transition
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FIG. 5: (Color online) Evolution of the quantities ∆Epairing

(a), ∆EMF (b) and ∆Etot (c) along the Kr isotopic chain. The
horizontal dashed line corresponds to the case where BCS and
SC-EDF would be identical.

from a sharp Fermi distribution around single or doubly
magic nuclei with BCS to a fragmented Fermi surface
with non-zero pairing within SC-EDF leads to a signif-
icant change in the mean-field energy, especially due to
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FIG. 6: (Color online) Same as figure 5 for the Sn isotopic
chain.

the contribution of single-particle levels above the Fermi
energy. We can observe on both figures 5 and 6 this ef-
fect. However, it is not possible to give more general
trends because of the deformation and self-consistency of
the theory.
In figure 7, the two neutron separation energies S2n

obtained in the BCS (green dashed line) and SC-EDF
(blue solid line) are compared with the experimental val-
ues (black open circles). This quantity is sometime used
in the literature to adjust the pairing effective interac-
tion parameters. We see on the figure that both BCS
and VAP are consistent with experiments. In fact, the
S2n are not affected by the variation after projection per-
formed within SC-EDF.
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FIG. 7: (Color online) Comparaison of the two neutron sep-
aration energies S2n along the Sn isotopic chain between BCS
(green dotted line) and SC-EDF (blue solid line) with the
experimental values (black open circles).

The applications of the SC-EDF functional show that
the bulk properties (figures 1, 2 and 7) of the underlying
effective interaction are conserved while the total bind-
ing and pairing energies are shifted (figures 5 and 6).
For all nuclei studied, the SC-EDF functional predicts a
non zero pairing energy and a fragmented Fermi surface.
This is reflected by the non zero pairing gap (figures 3
and 4) for all nuclei including single and doubly magic

ones where BCS leads to a Fermi distribution for the or-
bital occupancies. In the following, the evolution of these
observations are investigated as a function of the refitting
of the strength V0 of the pairing interaction.

IV. DISCUSSION OF THE PAIRING
STRENGTH

The pairing interaction used above is often adjusted
to properly describe pairing gaps in EDF using BCS or
HFB especially in the mid-shell [32, 35–37]. As seen in
the previous section, going beyond the mean-field leads
to an overestimation of the pairing energy in this re-
gion. Consistently with a density functional approach,
one should indeed a priori readjust the pairing strength
when the functional changes. In this section, the results
of VAP with an optimal value of the pairing strength are
presented.
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FIG. 8: (Color online) Same as figure 3 with a pairing
strength of V0 = 1100 MeV. The green dashed curve corre-
sponds to the BCS result while the blue solid line corresponds
to the SC-EDF case.
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FIG. 9: (Color online) Same as figure 4 for the Sn isotopes.

In figures 8 and 9, results of the BCS (green dashed
line) and SC-EDF (blue solid line) with a pairing strength
V0 = 1100 MeV are shown. This value of the strength
has been chosen to properly describe Kr isotopes in the
open-shell. By comparing these figures with 3 and 4, it
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can be observed that SC-EDF with the reduced pairing
interaction reproduces the original BCS result (with V0 =
1250 MeV) in open shell nuclei.
It should however be mentioned that the refitting of

pairing effective interaction solely when incorporating
particle number projection is a too simplistic strategy
to properly describe both the pairing and the bulk prop-
erties in nuclei. This is illustrated in Table I where the
binding and pairing energies obtained with BCS and the
original pairing interaction are compared with the SC-
EDF results and the reduced pairing strength. While

TABLE I: Comparison between the binding and pairing ener-
gies of selected Kr isotopes predicted by BCS (with V0 = 1250
MeV ) and SC-EDF (with V0 = 1100 MeV).

.
N Z BCS BCS pairing VAP VAP pairing Exp[34]

46 36 -715.64 -7.44 -716.34 -6.98 -714.27

48 36 -733.43 -5.19 -734.29 -5.44 -732.26

50 36 -750.41 -4.99 -750.91 -5.49 -749.23

52 36 -761.65 -5.04 -762.49 -5.47 -761.80

54 36 -772.3 -5.9 -773.18 -5.63 -773.21

pairing energies are similar, as could be anticipated from
the fact that the gaps are similar, the binding energy de-
duced with the SC-EDF is often lower than the BCS and
the original BCS is closer to the experimental binding
energy. This stems from the fact that both the mean-
field and pairing channel have been consistently adjusted
simultaneously at the BCS level. When performing VAP
not only the pairing correlations are affected but also ad-
ditional correlations build up in the particle-hole chan-
nel, leading to a rather significant reorganization of the
mean-field itself. This has been already clearly applied in
figures 5 and 6. As a consequence, to improve the quality
of theories that go beyond mean-field by restoring sym-
metries compared to those where symmetries are broken,
in the near future, a complete readjustment of all com-
ponents of the functional (mean-field and pairing) should
be considered at the VAP level.

V. CONCLUSION

The recently proposed Symmetry-Conserving EDF ap-
proach to incorporate the effect of particle number con-
servation is performed in the Variation After Projection
(VAP) scheme. The VAP is applied using density depen-
dent interaction both in the mean-field and pairing chan-

nels. Such a density dependence, while impossible to use
in configuration mixing calculations, does not lead to any
difficulty in the SC-EDF framework. Systematic study
of the krypton and tin isotopic chains is made show-
ing the increase of pairing energy when particle num-
ber conservation is taken into account self-consistently.
In particular, the description of correlations close or in
the vicinity to closed shell nuclei is improved. Indeed,
as expected, the symmetry conserving theory predicts
non vanishing pairing gaps around and at shell closures.
The present study clearly shows that the incorporation
of symmetry restoration leads to an enriched functional
and that the parameters used to design the functional
in the original symmetry breaking approach need to be
consistently readjusted. Here, a first attempt is made to
reduce the pairing strength in order to properly describe
pairing gaps. We point out that, ultimately, coefficients
of the functional in both mean-field and pairing chan-
nels should be simultaneously optimized to really gain in
predictive power of EDF approaches.
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Appendix A: Euler-Lagrange equations

In the case of the SC-EDF built from a quasi-particle
vacuum and a two-body delta interaction, the eigen-
equations to be solved as a self-consistent mean-field
problem read

∂ESC
∂ϕ⋆

i (r)
=
(
− h̄2

2m⋆
∆+

∑
j ̸=(i,̄ı)

∂ v̄ρρijij
∂ϕ⋆

i (r)∂ϕi(r)

RN
jiji

ρNii

+
∂ v̄ρρiiii

∂ϕ⋆
i (r)∂ϕi(r)

ρNii − εi

)
ρNii ϕi(r) , (A1)

where the contribution from the pairing part of the func-
tional have been neglected as it is usually done, v̄ρρ is a
particle-hole contact interaction, RN

jiji is the projection of
the one body density acting in the particle-hole channel
and εi is the Lagrange multiplier that enforces the nor-
malization of the single-particle state ϕi. It can be noted
that in this form there is one potential for each orbitals
due to the density dependence in the summation. The
role of the prescription 7 is to remove this dependency
hence recovering a single mean-field for all orbits.
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[16] T. R. Rodŕıguez and J. L. Egido, Phys. Rev. Lett. 99,

062501 (2007).
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